An Introduction to R

James H. Steiger

Department of Psychology and Human Development Vanderbilt University

Multilevel Regression Modeling, 2009

An Introduction to R

1 Getting Started

- 2 R as a simple calculator
- **3** Simple Statistical Operations
 - Entering Data as a Vector
 - Basic Descriptive Statistics
 - Listwise Transformations
 - Statistical Distribution Functions
 - Basic Statistical Graphics

4 Defining Your Own Functions

Running R

Starting the Program

- After installing the program, you start R by clicking on the desktop blue R icon, or by using the Start menu
- You will need to install the arm package.

Running R

Starting the Program

- After installing the program, you start R by clicking on the desktop blue R icon, or by using the Start menu
- You will need to install the arm package.

Running R

Starting the Program

- After installing the program, you start R by clicking on the desktop blue R icon, or by using the Start menu
- You will need to install the arm package.

Simple Calculations in R Entering Simple Commands

- When you see the > character, you are being prompted for input
- To enter a command, type it in and press the <Enter> key, and you will see the output
- Here is a simple example:

Simple Calculations in R Entering Simple Commands

- When you see the > character, you are being prompted for input
- To enter a command, type it in and press the <Enter> key, and you will see the output
- Here is a simple example:

Simple Calculations in R Entering Simple Commands

- When you see the > character, you are being prompted for input
- To enter a command, type it in and press the <Enter> key, and you will see the output
- Here is a simple example:

Simple Calculations in R Entering Simple Commands

- When you see the > character, you are being prompted for input
- To enter a command, type it in and press the <Enter> key, and you will see the output
- Here is a simple example:

Simple Calculations in R Arithmetic Syntax

- In R, + and mean addition and subtraction, respectively
- * and / mean multiplication and division
- *Remember*, you must enter the *
- Exponentiation is indicated with a carat, i.e., ^

Simple Calculations in R Arithmetic Syntax

- In R, + and mean addition and subtraction, respectively
- * and / mean multiplication and division
- *Remember*, you must enter the *
- Exponentiation is indicated with a carat, i.e.,

Simple Calculations in R Arithmetic Syntax

- In R, + and mean addition and subtraction, respectively
- * and / mean multiplication and division
- *Remember*, you must enter the *
- Exponentiation is indicated with a carat, i.e.,

Simple Calculations in R Arithmetic Syntax

- $\bullet\,$ In R, + and mean addition and subtraction, respectively
- $\bullet\,$ * and / mean multiplication and division
- *Remember*, you must enter the *
- Exponentiation is indicated with a carat, i.e.,

Simple Calculations in R Arithmetic Syntax

- $\bullet\,$ In R, + and mean addition and subtraction, respectively
- $\bullet\,$ * and / mean multiplication and division
- *Remember*, you must enter the *
- Exponentiation is indicated with a carat, i.e., ^

Simple Calculations in R Arithmetic Syntax

Example (Very Simple Calculations)

Here are some simple examples:

> 3*8

[1] 24

> 4*(2-1)

[1] 4

> 2^4

[1] 16

> 3^(2+1)

[1] 27

Simple Calculations in R Arithmetic Syntax

Example (Slightly More Complicated Calculations)

Here are some slightly more complicated examples

```
> sqrt(5*(14-2)/11)
```

```
[1] 2.335497
```

```
> ((3+6)/11)^2
```

[1] 0.6694215

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Entering Data as a Vector

Entering Data as a Vector

- Suppose we wished to analyze the list of numbers 1,2,3,4,5
- Entering that in R is simple, using the concatenation function c()
- In the example below, we enter the vector of numbers 1,2,3,4,5 and assign it to the variable **x**

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

・ロト ・日下 ・日下

-

Entering Data as a Vector

Example (Assigning a List to a Variable)
> $x \leftarrow c(1,2,3,4,5)$
> x
[1] 1 2 3 4 5

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Basic Descriptive Statistics

Example (Some Basic Statistics)

Once we have our numbers in a variable, it is easy to compute basic summary statistics

- > x \leftarrow c(1,2,3,4,5)
- > mean(x)

[1] 3

> var(x)

[1] 2.5

> sd(x)

[1] 1.581139

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Listwise Transformations

Example (Listwise Transformations)

It is ridiculously simple to do simple listwise transformations in R. Just write the formula. Below we verify something from Psychology 310, i.e., that if y = 2x + 5, then $\overline{y} = 2\overline{x} + 5$.

```
> x \leftarrow c(1,2,3,4,5)
> y \leftarrow 2*x + 5
> y
[1] 7 9 11 13 15
> mean(y)
[1] 11
> 2*mean(x)+5
[1] 11
```

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

• • • • • • • • •

Statistical Distribution Functions pdfs and cdfs

- R has a wide range of capabilities for displaying and forming calculations involving distribution functions
- Recall that, for distribution functions, there are several quantities we can calculate
- For each distribution, there is the *probability distribution* function (pdf) and the cumulative distribution function (cdf)

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions pdfs and cdfs

- R has a wide range of capabilities for displaying and forming calculations involving distribution functions
- Recall that, for distribution functions, there are several quantities we can calculate
- For each distribution, there is the *probability distribution* function (pdf) and the cumulative distribution function (cdf)

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions pdfs and cdfs

- R has a wide range of capabilities for displaying and forming calculations involving distribution functions
- Recall that, for distribution functions, there are several quantities we can calculate
- For each distribution, there is the *probability distribution* function (pdf) and the cumulative distribution function (cdf)

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions pdfs and cdfs

- R has a wide range of capabilities for displaying and forming calculations involving distribution functions
- Recall that, for distribution functions, there are several quantities we can calculate
- For each distribution, there is the *probability distribution* function (pdf) and the *cumulative distribution* function (cdf)

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions pdfs and cdfs

- The cdf, denoted F(x), is the probability that an observation taken at random from the distribution is less than or equal to x
- The term *pdf* can mean two different things, depending on whether the distribution is continuous or discrete:
 - For continuous distributions, it is denoted f(x) and is the probability density
 - For discrete distributions, it is denoted p(x) and refers to the probability that an observation taken at random from the distribution is equal to x (for discrete distributions)
- We shall illustrate each using the normal distribution as an example

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions pdfs and cdfs

- The cdf, denoted F(x), is the probability that an observation taken at random from the distribution is less than or equal to x
- The term *pdf* can mean two different things, depending on whether the distribution is continuous or discrete:
 - For continuous distributions, it is denoted f(x) and is the probability density
 - For discrete distributions, it is denoted p(x) and refers to the probability that an observation taken at random from the distribution is equal to x (for discrete distributions)
- We shall illustrate each using the normal distribution as an example

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions pdfs and cdfs

- The cdf, denoted F(x), is the probability that an observation taken at random from the distribution is less than or equal to x
- The term pdf can mean two different things, depending on whether the distribution is continuous or discrete:
 - For continuous distributions, it is denoted f(x) and is the probability density
 - For discrete distributions, it is denoted p(x) and refers to the probability that an observation taken at random from the distribution is equal to x (for discrete distributions)
- We shall illustrate each using the normal distribution as an example

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions pdfs and cdfs

- The cdf, denoted F(x), is the probability that an observation taken at random from the distribution is less than or equal to x
- The term *pdf* can mean two different things, depending on whether the distribution is continuous or discrete:
 - For continuous distributions, it is denoted f(x) and is the probability density
 - For discrete distributions, it is denoted p(x) and refers to the probability that an observation taken at random from the distribution is equal to x (for discrete distributions)
- We shall illustrate each using the normal distribution as an example

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions pdfs and cdfs

- The cdf, denoted F(x), is the probability that an observation taken at random from the distribution is less than or equal to x
- The term *pdf* can mean two different things, depending on whether the distribution is continuous or discrete:
 - For continuous distributions, it is denoted f(x) and is the probability density
 - For discrete distributions, it is denoted p(x) and refers to the probability that an observation taken at random from the distribution is equal to x (for discrete distributions)
- We shall illustrate each using the normal distribution as an example

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions pdfs and cdfs

- The cdf, denoted F(x), is the probability that an observation taken at random from the distribution is less than or equal to x
- The term *pdf* can mean two different things, depending on whether the distribution is continuous or discrete:
 - For continuous distributions, it is denoted f(x) and is the probability density
 - For discrete distributions, it is denoted p(x) and refers to the probability that an observation taken at random from the distribution is equal to x (for discrete distributions)
- We shall illustrate each using the normal distribution as an example

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions The Normal Distribution

- Statistical distribution functions in R are called with a common set of conventions
- A function name is of the form [prefix][distribution name]
- The prefixes are a fixture in R, which makes things easier

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions The Normal Distribution

- Statistical distribution functions in R are called with a common set of conventions
- A function name is of the form [prefix][distribution name]
- The prefixes are a fixture in R, which makes things easier

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions The Normal Distribution

- Statistical distribution functions in R are called with a common set of conventions
- A function name is of the form [prefix][distribution name]
- The prefixes are a fixture in R, which makes things easier

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions The Normal Distribution

- Statistical distribution functions in R are called with a common set of conventions
- A function name is of the form [prefix][distribution name]
- The prefixes are a fixture in R, which makes things easier

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions The Normal Distribution cdf

- Consider the normal distribution cdf
- All cdfs use the prefix **p** followed by the distribution name
- To call the normal distribution cdf, you use the function pnorm()

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions The Normal Distribution cdf

The Normal Distribution cdf

- The function pnorm() illustrates some neat features of R functions and their specification
- If we look up the guide to calling the function, it says that the function call is of the form pnorm(x,mean=0,sd=1)
- When an argument name is given with an = sign, as in mean = 0, it means there is a *default value* for the argument
- If you leave out default arguments, the default values are assumed

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

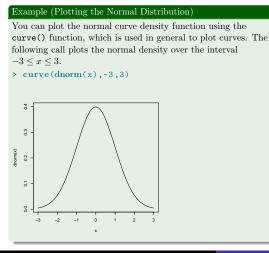
æ

Statistical Distribution Functions The Normal Distribution cdf

Example (The Normal Distribution cdf)
<pre>> pnorm(1, mean=0, sd=1)</pre>
[1] 0.8413447
> pnorm(1)
[1] 0.8413447
> pnorm(1,0,1)
[1] 0.8413447
> pnorm(115,100,15)
[1] 0.8413447

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions The Normal Distribution pdf


The Normal Distribution pdf

- pdfs use the prefix d
- So the normal pdf is called with the function of the form dnorm(x,mean=0,sd=1)

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

< A > < 3

Statistical Distribution Functions The Normal Distribution pdf

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions _{Quantiles}

Quantiles

- A very valuable function for any distribution is the ability to compute percentile points
- R implements this in its quantile function
- Quantiles are indicated with the prefix **q** in front of the distribution name
- For example, a normal distribution quantile uses the function qnorm(p,mean=0,sd=1)

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions Quantiles

Example (Normal Distribution Quantiles)

Computing the 90th percentile for a standard normal distribution:

- > qnorm(.90)
- [1] 1.281552

Computing the 75th percentile for a normal distribution with a mean of 100 and a standard deviation of 15:

```
> qnorm(.90,100,15)
```

[1] 119.2233

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

Statistical Distribution Functions Random Number Generation

Example (Random Number Generation)

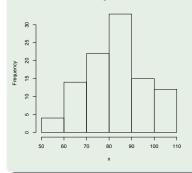
It is very useful to be able to simulate sampling from a known distribution. In the following example, we create two simulated samples, each of size 100. For reproducibility, we set the random number seed.

```
> set.seed (12345)
```

```
> x \leftarrow rnorm(100, 80, 12)
```

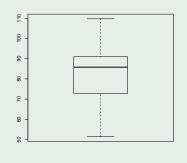
```
> y \leftarrow rnorm(100, 72, 8)
```

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics


Basic Statistical Graphs The Histogram

Example (The Histogram)

Here is a histogram of the x data from the preceding slide:


Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics

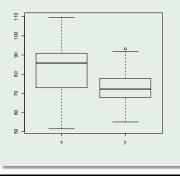
Basic Statistical Graphs The Boxplot

Example (The Boxplot)

Here is a boxplot of the x data from the preceding slide:

> boxplot(x)

Entering Data as a Vector Basic Descriptive Statistics Listwise Transformations Statistical Distribution Functions Basic Statistical Graphics


< 🗗 >

Basic Statistical Graphs Boxplots Side-by-Side

Example (Boxplots Side-by-Side)

Comparing distributions is greatly facilitated by having boxplots side-by-side.

```
> boxplot(x,y,names = c('x','y'))
```


Defining Functions in R

As a statistical analysis environment, R is readily extended by user-defined functions. To define a function, you take a name, tell R that this object is a function, and list its arguments. You then define what the function does inside a set of braces. Here is a very simple example:

```
Example (A Deviation Score Function)

> deviation.score \leftarrow function(x)

+ {

+ return( x-mean(x) )

+ }

> w \leftarrow c(3,4,3,2,8)

> deviation.score(w)

[1] -1 0 -1 -2 4
```

Combining Functions

Example (Combining Functions)

We can use the deviation.score function we just defined as a building block in another function For example, here is a simple variance calculator. Note that it uses the length function and the deviation.score function.